例题 5.1. 计算 n 阶行列式 D=a1100⋮0an1000⋮an−1,2an2⋯⋯⋯⋯⋯00a3,n−2⋮000a2,n−1a3,n−1⋮00a1na2n0⋮00. \begin{proof} 将行列式按第一行展开, 得 D=(−1)1+1a1100⋮an−1,2an2⋯⋯⋯⋯0a3,n−2⋮00a2,n−1a3,n−1⋮00a2n0⋮00+(−1)1+na1n00⋮0an100⋮an−1,2an2⋯⋯⋯⋯0a3,n−2⋮00a2,n−1a3,n−1⋮00=a11(−1)21(n−1)(n−2)a2na3,n−1⋯an2+(−1)1+na1n(−1)21(n−1)(n−2)a2,n−1a3,n−2⋯an1=(−1)21(n−1)(n−2)a11a2na3,n−1⋯an2+(−1)21n(n−1)a1na2,n−1a3,n−2⋯an1. \end{proof}