证明 n 阶 (n≥2) 范德蒙德 (Vandermonde) 行列式
Vn=1a1a12⋮a1n−2a1n−11a2a22⋮a2n−2a2n−11a3a32⋮a3n−2a3n−1⋯⋯⋯⋯⋯1an−1an−12⋮an−1n−2an−1n−11anan2⋮ann−2ann−1=1≤j<i≤n∏(ai−aj).
\begin{proof}
对 n 用数学归纳法.
当 n=2 时,有
V2=1a11a2=a2−a1
结论成立.
假设对于 n−1 阶范德蒙德行列式 Vn−1 结论成立,
下证对于 n 阶范德蒙德行列式结论成立.
在 Vn 中,从第 n 行开始逐行减去上一行的 an 倍,得
Vni=n,n−1,⋯,2ri−anri−11a1−ana1(a1−an)⋮a1n−3(a1−an)a1n−2(a1−an)1a2−ana2(a2−an)⋮a2n−3(a2−an)a2n−2(a2−an)⋯⋯⋯⋯⋯1an−1−anan−1(an−1−an)⋮an−1n−3(an−1−an)an−1n−2(an−1−an)100⋮00
按第 n 列展开 (−1)1+na1−ana1(a1−an)⋮a1n−3(a1−an)a1n−2(a1−an)a2−ana2(a2−an)⋮a2n−3(a2−an)a2n−2(a2−an)⋯⋯⋯⋯an−1−anan−1(an−1−an)⋮an−1n−3(an−1−an)an−1n−2(an−1−an)
i=1,2,⋯,n−1ci÷(ai−an)(−1)n+11≤j≤n−1∏(aj−an)1a1a12⋮a1n−21a2a22⋮a2n−21a3a32⋮a3n−2⋯⋯⋯⋯1an−1an−12⋮an−1n−2
=1≤j≤n−1∏(an−aj)Vn−1
=1≤j≤n−1∏(an−aj)1≤j<i≤n−1∏(ai−aj)
=1≤j<i≤n∏(ai−aj).
\end{proof}