定理 3.13 Radon 定理

  • 任何在 中的 个点的集合 都可以被划分为两个子集
  • 使得 的凸包相交。

\begin{proof}

  • 以下是关于 个线性方程组: \mathop{\sum }\limits_{{i = 1}}^{{d + 2}}{\alpha }_{i}{\mathbf{x}}_{i} = 0\;\text{ and }\;\mathop{\sum }\limits_{{i = 1}}^{{d + 2}}{\alpha }_{i} = 0, \tag{3.26}

  • 由于第一个等式给出了 个方程,每个方程对应一个分量。

  • 未知数的数量为 ,比方程的数量 多,因此系统存在一个非零解

  • 由于 ,所以

    • 是非空集合,
  • 形成了 的划分。

  • 根据方程 (3.26) 的最后一个方程,

  • .

  • 那么,(3.26) 的第一部分可得

  • 其中

    • 对于
    • 对于
  • 根据凸包的定义,

    • 这意味着 同时属于 的凸包。 \end{proof}