与可分离情况一样,约束是仿射的,因此是合格的。目标函数以及仿射约束是凸的且可微的。因此,定理B.30的假设成立,KKT条件在最优解处适用。我们使用这些条件来分析算法并展示其几个关键性质,并随后推导出与SVMs相关的对偶优化问题,在5.3.3节中。

我们引入拉格朗日变量 ,与第一个 约束相关,以及 与松弛变量的非负约束相关。我们用 表示向量 ,用 表示向量 。拉格朗日函数可以定义为所有 的函数。

KKT条件是通过将拉格朗日函数相对于原变量的梯度 s 设为零,并写出互补条件得到的。

By equation (5.26), as in the separable case, the weight vector at the solution of the SVM problem is a linear combination of the training set vectors . A vector appears in that expansion iff . Such vectors are called support vectors. Here, there are two types of support vectors. By the complementarity condition (5.29), if , then . If , then and lies on a marginal hyperplane, as in the separable case. Otherwise, and is an outlier. In this case,(5.30) implies and (5.28) then requires . Thus, support vectors are either outliers, in which case , or vectors lying on the marginal hyperplanes. As in the separable case, note that while the weight vector solution is unique, the support vectors are not.