从维尼纶正常生产线上测得 100 个维尼纶纤度 (表示维尼纶粗细程度的一个量) 数据: 试问可否认为该生产线维尼纶纤度为正态分布. (显著性水平 )?

1.361.491.431.411.371.401.321.421.471.39
1.411.361.401.341.421.421.451.351.421.39
1.441.421.391.421.421.301.341.421.371.36
1.371.341.371.371.441.451.321.481.401.45
1.391.461.391.531.361.481.401.391.381.40
1.361.451.501.431.381.431.411.481.391.46
1.371.371.391.451.311.411.441.441.421.47
1.351.361.391.401.381.351.421.431.421.42
1.421.401.411.371.461.361.371.271.371.38
1.421.341.431.421.411.411.441.481.551.37

记维尼纶纤度为 ,则问题可归结为检验下面假设.

成立,则 的最大似然估计分别为样本均值 和样本方差 田效据计算得估计值分别为

田具体 100 个数据取值的范围和分布特点, 将数据以组距为 0.03 分为 6 个区间, 并用估计参数查正态分布表得到概率值

并统计数据落在各区间的频数得到: .

区间 频数 估计概率
120.1446
220.1854
230.2453
250.2157
100.1326
80.0764

因为 ,所以在显著性水平 0.10 下接受 即可以认为维尼纶纤度服从正态分布 .

代码

另外,请读者执行如下 程序,看有什么结果.



														$\mathrm{x} <  - \mathrm{c}({1.36},{1.49},{1.43},{1.41},{1.37},{1.40},{1.32},{1.42},{1.47},{1.39},{1.41},{1.36}$.

														1.40,1.34,1.42,1.42,1.45,1.35,

													1.42,1.39,1.44,1.42,1.39,1.42,1.42,1.30,1.34,1.42,1.37,1.36,1.37.

													1.34,1.37,1.37,1.44,1.45,1.32,

									1.48,1.40,1.45,1.39,1.46,1.39,1.53,1.36,1.48,1.40,1.39,1.38,1.40.

											1.36,1.45,1.50,1.43,1.38,1.43,

							1.41,1.48,1.39,1.46,1.37,1.37,1.39,1.45,1.31,1.41,1.44,1.44,1.42.

							1.47,1.35,1.36,1.39,1.40,1.38,

						1.35,1.42,1.43,1.42,1.42,1.42,1.40,1.41,1.37,1.46,1.36,1.37,1.27.

					${1.37},{1.38},{1.42},{1.34},{1.43},{1.42},{1.41},{1.41},{1.44},{1.48},{1.55},{1.37})$

			$r <  - 2$

		alpha $<  - {0.1}$

	$m <  - {length}\left( x\right)$

mu.hat<-mean(x); sig.hat<-sd(x)*sqrt((m-1)/m)

ac(-Inf,1.355,1.385,1.415,1.445,1.475,+Inf)




vrep(0, length(a)-1)

pnumeric(length(a)-1)

for(i in 1:6)

	$\left\{  \begin{array}{l} p\left\lbrack  i\right\rbrack   = \text{ pnorm ((a[i+1] -mu.hat)/sig.hat) -pnorm ((a[i] -mu.hat)/sig.hat) } \\   \end{array}\right.$

			$v\left\lbrack  i\right\rbrack   <  - \operatorname{sum}\left( {a\left\lbrack  i\right\rbrack   < x\;\& \;x <  = a\left\lbrack  {i + 1}\right\rbrack  }\right)$

	\}

$\mathrm{n} <  - \operatorname{sum}\left( \mathrm{v}\right)$

$K <  - \operatorname{sum}\left( {\left( {v - n * p}\right)  \cap  2/\left( {n * p}\right) }\right)$

list(K=K, X2.value=qchisq(1-alpha, length(v)-r-1))