• PMF of Bernoulli Random Variable :
  • Alternative Store Scenario:
  • General Form of PMF:
      • Condition:
    • Notation:
      • PMF often written as instead of just p\left( {x;\alpha }\right) = \left\{ \begin{matrix} 1 - \alpha & \text{ if }x = 0 \\ \alpha & \text{ if }x = 1 \\ 0 & \text{ otherwise } \end{matrix}\right. \tag{3.1}
  • Then each choice of in Expression (3.1) yields a different pmf.

parameters of distributions

  • Parameter of a distribution:
    • A quantity that influences the probability distribution .
    • Each value of the parameter results in a different probability distribution.
  • Family of probability distributions:
    • The collection of all probability distributions corresponding to different values of the parameter.
  • Parameter in Expression (3.1):
    • Represents a parameter for the Bernoulli distribution.
  • Each value of (where ) corresponds to:
    • A different member of the Bernoulli family of distributions.

EX 3.12 gender of newborn child