例 2.37
求下列 n 阶矩阵的逆矩阵 (ai=0) :
A=1+a111⋮111+a21⋮1111+a3⋮1⋯⋯⋯⋯111⋮1+an解 对 (A;In) 用初等变换法,将第 i 行乘以 ai−1(i=1,2,⋯,n) ,有
1+a111⋮111+a21⋮1111+a3⋮1⋯⋯⋯⋯111⋮1+an⋮1⋮0⋮0⋮0010⋮0001⋮0⋯⋯⋯⋯000⋮1→ 1+a11a21a31⋮an1a111+a21a31⋮an1a11a211+a31⋮an1⋯⋯⋯⋯a11a21a31⋮1+an1a1100⋮00a210⋮000a31⋮0⋯⋯⋯⋮⋯000an1⋮.将下面的行都加到第一行上,并令 s=1+a11+a21+⋯+an1 ,则上面的矩阵变为
sa21a31⋮an1s1+a21a31⋮an1sa211+a31⋮an1⋯⋯⋯⋯sa21a31⋮1+an1a111111⋮11a2100⋮0a31a210⋮0⋯0a31⋮0an1⋯⋯⋯00⋮an1→ 1a21a31⋮an111+a21a31⋮an11a211+a31⋮an1⋯⋯⋯⋯1a21a31⋮1+an1sa110101⋮0sa21a210⋮0sa3100⋮0⋯⋯a31⋮⋯san10⋯an10⋮→ 100⋮0110⋮0101⋮0⋯⋯⋯⋯100⋮1sa11−sa2a11−sa3a11⋮−sana11sa21sa22sa2−1−sa3a21⋮−sana21sa31−sa2a31sa32sa3−1⋮−sana31⋯⋯⋯⋮⋯san1−sa2an1−sa3an1san2san−1再消去第一行的 1 就得到
A−1=−s1a121−sa1a2a11a3a11⋮ana11a1a21a221−sa2a3a21⋮ana21a1a31a2a31a321−sa3⋮ana31⋯⋯⋯⋯a1an1a2an1a3an1⋮an21−san.□